3.5.64 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2} (f+g x)^4} \, dx\)

Optimal. Leaf size=265 \[ \frac {c^3 d^3 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{8 g^{5/2} (c d f-a e g)^{3/2}}+\frac {c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 g^2 \sqrt {d+e x} (f+g x) (c d f-a e g)}-\frac {c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 g^2 \sqrt {d+e x} (f+g x)^2}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2} (f+g x)^3} \]

________________________________________________________________________________________

Rubi [A]  time = 0.35, antiderivative size = 265, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {862, 872, 874, 205} \begin {gather*} \frac {c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 g^2 \sqrt {d+e x} (f+g x) (c d f-a e g)}+\frac {c^3 d^3 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{8 g^{5/2} (c d f-a e g)^{3/2}}-\frac {c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 g^2 \sqrt {d+e x} (f+g x)^2}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2} (f+g x)^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g*x)^4),x]

[Out]

-(c*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*g^2*Sqrt[d + e*x]*(f + g*x)^2) + (c^2*d^2*Sqrt[a*d*e + (
c*d^2 + a*e^2)*x + c*d*e*x^2])/(8*g^2*(c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x)) - (a*d*e + (c*d^2 + a*e^2)*x +
c*d*e*x^2)^(3/2)/(3*g*(d + e*x)^(3/2)*(f + g*x)^3) + (c^3*d^3*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x +
 c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(8*g^(5/2)*(c*d*f - a*e*g)^(3/2))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 862

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[((d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p)/(g*(n + 1)), x] + Dist[(c*m)/(e*g*(n + 1)), Int[(d +
e*x)^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f
 - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && GtQ[p,
 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])

Rule 872

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((n + 1)*(c*e*f + c*d*g - b*e*g)), x
] - Dist[(c*e*(m - n - 2))/((n + 1)*(c*e*f + c*d*g - b*e*g)), Int[(d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x
^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^
2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rule 874

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^4} \, dx &=-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2} (f+g x)^3}+\frac {(c d) \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^3} \, dx}{2 g}\\ &=-\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g^2 \sqrt {d+e x} (f+g x)^2}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2} (f+g x)^3}+\frac {\left (c^2 d^2\right ) \int \frac {\sqrt {d+e x}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 g^2}\\ &=-\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g^2 \sqrt {d+e x} (f+g x)^2}+\frac {c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^2 (c d f-a e g) \sqrt {d+e x} (f+g x)}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2} (f+g x)^3}+\frac {\left (c^3 d^3\right ) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{16 g^2 (c d f-a e g)}\\ &=-\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g^2 \sqrt {d+e x} (f+g x)^2}+\frac {c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^2 (c d f-a e g) \sqrt {d+e x} (f+g x)}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2} (f+g x)^3}+\frac {\left (c^3 d^3 e^2\right ) \operatorname {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{8 g^2 (c d f-a e g)}\\ &=-\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g^2 \sqrt {d+e x} (f+g x)^2}+\frac {c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^2 (c d f-a e g) \sqrt {d+e x} (f+g x)}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2} (f+g x)^3}+\frac {c^3 d^3 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{8 g^{5/2} (c d f-a e g)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.06, size = 79, normalized size = 0.30 \begin {gather*} \frac {2 c^3 d^3 ((d+e x) (a e+c d x))^{5/2} \, _2F_1\left (\frac {5}{2},4;\frac {7}{2};\frac {g (a e+c d x)}{a e g-c d f}\right )}{5 (d+e x)^{5/2} (c d f-a e g)^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g*x)^4),x]

[Out]

(2*c^3*d^3*((a*e + c*d*x)*(d + e*x))^(5/2)*Hypergeometric2F1[5/2, 4, 7/2, (g*(a*e + c*d*x))/(-(c*d*f) + a*e*g)
])/(5*(c*d*f - a*e*g)^4*(d + e*x)^(5/2))

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 180.03, size = 0, normalized size = 0.00 \begin {gather*} \text {\$Aborted} \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g*x)^4),x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [B]  time = 0.47, size = 1434, normalized size = 5.41

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^4,x, algorithm="fricas")

[Out]

[1/48*(3*(c^3*d^3*e*g^3*x^4 + c^3*d^4*f^3 + (3*c^3*d^3*e*f*g^2 + c^3*d^4*g^3)*x^3 + 3*(c^3*d^3*e*f^2*g + c^3*d
^4*f*g^2)*x^2 + (c^3*d^3*e*f^3 + 3*c^3*d^4*f^2*g)*x)*sqrt(-c*d*f*g + a*e*g^2)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*
a*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*f*g + a*
e*g^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + (e*f + d*g)*x)) - 2*(3*c^3*d^3*f^3*g - a*c^2*d^2*e*f^2*g^2 - 10*a^2*c*d
*e^2*f*g^3 + 8*a^3*e^3*g^4 - 3*(c^3*d^3*f*g^3 - a*c^2*d^2*e*g^4)*x^2 + 2*(4*c^3*d^3*f^2*g^2 - 11*a*c^2*d^2*e*f
*g^3 + 7*a^2*c*d*e^2*g^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^2*d^3*f^5*g^3 - 2*a
*c*d^2*e*f^4*g^4 + a^2*d*e^2*f^3*g^5 + (c^2*d^2*e*f^2*g^6 - 2*a*c*d*e^2*f*g^7 + a^2*e^3*g^8)*x^4 + (3*c^2*d^2*
e*f^3*g^5 + a^2*d*e^2*g^8 + (c^2*d^3 - 6*a*c*d*e^2)*f^2*g^6 - (2*a*c*d^2*e - 3*a^2*e^3)*f*g^7)*x^3 + 3*(c^2*d^
2*e*f^4*g^4 + a^2*d*e^2*f*g^7 + (c^2*d^3 - 2*a*c*d*e^2)*f^3*g^5 - (2*a*c*d^2*e - a^2*e^3)*f^2*g^6)*x^2 + (c^2*
d^2*e*f^5*g^3 + 3*a^2*d*e^2*f^2*g^6 + (3*c^2*d^3 - 2*a*c*d*e^2)*f^4*g^4 - (6*a*c*d^2*e - a^2*e^3)*f^3*g^5)*x),
 -1/24*(3*(c^3*d^3*e*g^3*x^4 + c^3*d^4*f^3 + (3*c^3*d^3*e*f*g^2 + c^3*d^4*g^3)*x^3 + 3*(c^3*d^3*e*f^2*g + c^3*
d^4*f*g^2)*x^2 + (c^3*d^3*e*f^3 + 3*c^3*d^4*f^2*g)*x)*sqrt(c*d*f*g - a*e*g^2)*arctan(sqrt(c*d*e*x^2 + a*d*e +
(c*d^2 + a*e^2)*x)*sqrt(c*d*f*g - a*e*g^2)*sqrt(e*x + d)/(c*d*e*g*x^2 + a*d*e*g + (c*d^2 + a*e^2)*g*x)) + (3*c
^3*d^3*f^3*g - a*c^2*d^2*e*f^2*g^2 - 10*a^2*c*d*e^2*f*g^3 + 8*a^3*e^3*g^4 - 3*(c^3*d^3*f*g^3 - a*c^2*d^2*e*g^4
)*x^2 + 2*(4*c^3*d^3*f^2*g^2 - 11*a*c^2*d^2*e*f*g^3 + 7*a^2*c*d*e^2*g^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 +
a*e^2)*x)*sqrt(e*x + d))/(c^2*d^3*f^5*g^3 - 2*a*c*d^2*e*f^4*g^4 + a^2*d*e^2*f^3*g^5 + (c^2*d^2*e*f^2*g^6 - 2*a
*c*d*e^2*f*g^7 + a^2*e^3*g^8)*x^4 + (3*c^2*d^2*e*f^3*g^5 + a^2*d*e^2*g^8 + (c^2*d^3 - 6*a*c*d*e^2)*f^2*g^6 - (
2*a*c*d^2*e - 3*a^2*e^3)*f*g^7)*x^3 + 3*(c^2*d^2*e*f^4*g^4 + a^2*d*e^2*f*g^7 + (c^2*d^3 - 2*a*c*d*e^2)*f^3*g^5
 - (2*a*c*d^2*e - a^2*e^3)*f^2*g^6)*x^2 + (c^2*d^2*e*f^5*g^3 + 3*a^2*d*e^2*f^2*g^6 + (3*c^2*d^3 - 2*a*c*d*e^2)
*f^4*g^4 - (6*a*c*d^2*e - a^2*e^3)*f^3*g^5)*x)]

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^4,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.03, size = 453, normalized size = 1.71 \begin {gather*} \frac {\sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}\, \left (3 c^{3} d^{3} g^{3} x^{3} \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+9 c^{3} d^{3} f \,g^{2} x^{2} \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+9 c^{3} d^{3} f^{2} g x \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+3 c^{3} d^{3} f^{3} \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )-3 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, c^{2} d^{2} g^{2} x^{2}-14 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, a c d e \,g^{2} x +8 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, c^{2} d^{2} f g x -8 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, a^{2} e^{2} g^{2}+2 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, a c d e f g +3 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, c^{2} d^{2} f^{2}\right )}{24 \sqrt {e x +d}\, \sqrt {c d x +a e}\, \left (a e g -c d f \right ) \left (g x +f \right )^{3} \sqrt {\left (a e g -c d f \right ) g}\, g^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^4,x)

[Out]

1/24*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(3*arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*x^3*c^3*d
^3*g^3+9*arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*x^2*c^3*d^3*f*g^2+9*arctanh((c*d*x+a*e)^(1/2)/((
a*e*g-c*d*f)*g)^(1/2)*g)*x*c^3*d^3*f^2*g+3*arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*c^3*d^3*f^3-3*
((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*c^2*d^2*g^2*x^2-14*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*a*c*d*e
*g^2*x+8*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*c^2*d^2*f*g*x-8*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*a
^2*e^2*g^2+2*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*a*c*d*e*f*g+3*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)
*c^2*d^2*f^2)/(e*x+d)^(1/2)/(c*d*x+a*e)^(1/2)/(a*e*g-c*d*f)/g^2/(g*x+f)^3/((a*e*g-c*d*f)*g)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}}{{\left (e x + d\right )}^{\frac {3}{2}} {\left (g x + f\right )}^{4}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^4,x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((e*x + d)^(3/2)*(g*x + f)^4), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{{\left (f+g\,x\right )}^4\,{\left (d+e\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)^4*(d + e*x)^(3/2)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)^4*(d + e*x)^(3/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(3/2)/(g*x+f)**4,x)

[Out]

Timed out

________________________________________________________________________________________